Skip to content

AgentsUtils

ChatCompletionConverter

Bases: Converter

Source code in utu/utils/agents_utils.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class ChatCompletionConverter(Converter):
    @classmethod
    def items_to_messages(cls, items: str | Iterable[TResponseInputItem]) -> list[ChatCompletionMessageParam]:
        # skip reasoning, see chatcmpl_converter.Converter.items_to_messages()
        # agents.exceptions.UserError: Unhandled item type or structure:
        # {'id': '__fake_id__', 'summary': [{'text': '...', 'type': 'summary_text'}], 'type': 'reasoning'}
        if not isinstance(items, str):  # TODO: check it!
            items = cls.filter_items(items)
        return Converter.items_to_messages(items)

    @classmethod
    def filter_items(cls, items: str | Iterable[TResponseInputItem]) -> str | list[TResponseInputItem]:
        if isinstance(items, str):
            return items
        filtered_items = []
        for item in items:
            if item.get("type", None) == "reasoning":
                continue
            filtered_items.append(item)
        return filtered_items

    @classmethod
    def items_to_dict(cls, items: str | Iterable[TResponseInputItem]) -> list[dict]:
        """convert items to a list of dict which have {"role", "content"}
        WIP!
        """
        if isinstance(items, str):
            return [{"role": "user", "content": items}]
        result = []
        for item in items:
            if msg := Converter.maybe_easy_input_message(item):
                result.append(msg)
            elif msg := Converter.maybe_input_message(item):
                result.append(msg)
            elif msg := Converter.maybe_response_output_message(item):
                result.append(msg)
            elif msg := Converter.maybe_file_search_call(item):
                msg.update({"role": "tool", "content": msg["results"]})
                result.append(msg)
            elif msg := Converter.maybe_function_tool_call(item):
                msg.update({"role": "assistant", "content": f"{msg['name']}({msg['arguments']})"})
                result.append(msg)
            elif msg := Converter.maybe_function_tool_call_output(item):
                msg.update({"role": "tool", "content": msg["output"], "tool_call_id": msg["call_id"]})
                result.append(msg)
            elif msg := Converter.maybe_reasoning_message(item):
                msg.update({"role": "assistant", "content": msg["summary"]})
                result.append(msg)
            else:
                logger.warning(f"Unknown message type: {item}")
                result.append({"role": "assistant", "content": f"Unknown message type: {item}"})
        return result

items_to_dict classmethod

items_to_dict(
    items: str | Iterable[TResponseInputItem],
) -> list[dict]

convert items to a list of dict which have {"role", "content"} WIP!

Source code in utu/utils/agents_utils.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
@classmethod
def items_to_dict(cls, items: str | Iterable[TResponseInputItem]) -> list[dict]:
    """convert items to a list of dict which have {"role", "content"}
    WIP!
    """
    if isinstance(items, str):
        return [{"role": "user", "content": items}]
    result = []
    for item in items:
        if msg := Converter.maybe_easy_input_message(item):
            result.append(msg)
        elif msg := Converter.maybe_input_message(item):
            result.append(msg)
        elif msg := Converter.maybe_response_output_message(item):
            result.append(msg)
        elif msg := Converter.maybe_file_search_call(item):
            msg.update({"role": "tool", "content": msg["results"]})
            result.append(msg)
        elif msg := Converter.maybe_function_tool_call(item):
            msg.update({"role": "assistant", "content": f"{msg['name']}({msg['arguments']})"})
            result.append(msg)
        elif msg := Converter.maybe_function_tool_call_output(item):
            msg.update({"role": "tool", "content": msg["output"], "tool_call_id": msg["call_id"]})
            result.append(msg)
        elif msg := Converter.maybe_reasoning_message(item):
            msg.update({"role": "assistant", "content": msg["summary"]})
            result.append(msg)
        else:
            logger.warning(f"Unknown message type: {item}")
            result.append({"role": "assistant", "content": f"Unknown message type: {item}"})
    return result

AgentsUtils

Utils for openai-agents SDK

Source code in utu/utils/agents_utils.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
class AgentsUtils:
    """Utils for openai-agents SDK"""

    @staticmethod
    def generate_group_id() -> str:
        """Generate a unique group ID. (Used in OpenAI tracing)
        Ref: https://openai.github.io/openai-agents-python/tracing/
        """
        return uuid.uuid4().hex[:16]

    @staticmethod
    def gen_trace_id() -> str:
        return gen_trace_id()

    @staticmethod
    def get_current_trace() -> Trace:
        return get_current_trace()

    @staticmethod
    def get_agents_model(
        type: Literal["responses", "chat.completions", "litellm"] = None,
        model: str = None,
        base_url: str = None,
        api_key: str = None,
    ) -> Model:
        type = type or os.getenv("UTU_LLM_TYPE", "chat.completions")
        model = model or os.getenv("UTU_LLM_MODEL")
        if type == "litellm":
            # Ref: https://docs.litellm.ai/docs/providers
            # NOTE: should set .evn properly! e.g. AZURE_API_KEY, AZURE_API_BASE, AZURE_API_VERSION for Azure
            #   https://docs.litellm.ai/docs/providers/azure/
            from agents.extensions.models.litellm_model import LitellmModel

            return LitellmModel(model=model)

        base_url = base_url or os.getenv("UTU_LLM_BASE_URL")
        api_key = api_key or os.getenv("UTU_LLM_API_KEY")
        if not api_key or not base_url:
            raise ValueError("UTU_LLM_API_KEY and UTU_LLM_BASE_URL must be set")
        openai_client = AsyncOpenAI(
            api_key=api_key,
            base_url=base_url,
            timeout=100,
        )
        if type == "chat.completions":
            return OpenAIChatCompletionsModel(model=model, openai_client=openai_client)
        elif type == "responses":
            return OpenAIResponsesModel(model=model, openai_client=openai_client)
        else:
            raise ValueError("Invalid type: " + type)

    @staticmethod
    def get_trajectory_from_agent_result(agent_result: RunResult, agent_name: str = None) -> dict:
        if agent_name is None:
            agent_name = agent_result.last_agent.name
        return {
            "agent": agent_name,
            "trajectory": ChatCompletionConverter.items_to_messages(agent_result.to_input_list()),
        }

    @staticmethod
    def print_new_items(new_items: list[RunItem]) -> None:
        """Print new items generated by Runner.run()"""
        for new_item in new_items:
            agent_name = new_item.agent.name
            if isinstance(new_item, MessageOutputItem):
                PrintUtils.print_bot(f"{agent_name}: {ItemHelpers.text_message_output(new_item)}")
            elif isinstance(new_item, HandoffOutputItem):
                PrintUtils.print_info(f"Handed off from {new_item.source_agent.name} to {new_item.target_agent.name}")
            elif isinstance(new_item, ToolCallItem):
                assert isinstance(new_item.raw_item, ResponseFunctionToolCall)  # DONOT use openai's built-in tools
                PrintUtils.print_info(
                    f"{agent_name}: Calling a tool: {new_item.raw_item.name}({json.loads(new_item.raw_item.arguments)})"
                )
            elif isinstance(new_item, ToolCallOutputItem):
                PrintUtils.print_tool(f"Tool call output: {new_item.output}")
            elif isinstance(new_item, ReasoningItem):
                PrintUtils.print_info(f"{agent_name}: Reasoning: {new_item.raw_item}")
            else:
                PrintUtils.print_info(f"{agent_name}: Skipping item: {new_item.__class__.__name__}")

    @staticmethod
    async def print_stream_events(result: AsyncIterator[StreamEvent]) -> None:
        """Print stream events generated by Runner.run_streamed()"""
        async for event in result:
            # print(f"> [DEBUG] event: {event}")
            if isinstance(event, RawResponsesStreamEvent):
                # event.data -- ResponseStreamEvent
                if event.data.type == "response.output_item.added":
                    match event.data.item.type:
                        # computer_call, code_interpreter_call, custom_tool_call, file_search_call, function_call,
                        # we_search_call, image_generation_call, local_shell_call,
                        # mcp_call, mcp_list_tools, mcp_approval_request, message, reasoning
                        case "message":
                            pass
                        case "function_call":
                            PrintUtils.print_bot(
                                f"<toolcall name={event.data.item.name}>{event.data.item.arguments}", end=""
                            )
                        case _:
                            PrintUtils.print_bot(f"<{event.data.item.type}>", end="")
                elif event.data.type == "response.output_item.done":
                    match event.data.item.type:
                        case "message":
                            pass
                            # PrintUtils.print_bot("")  # add a new line?
                        case "function_call":
                            PrintUtils.print_bot("</toolcall>")
                        case _:
                            # PrintUtils.print_bot(f"</{event.data.item.type}>")
                            logger.info(f"</{event.data.item.type}>")  # It seems that vllm's output order is wrong
                elif event.data.type == "response.content_part.added":
                    match event.data.part.type:
                        # output_text, refusal
                        case "output_text":
                            pass
                        case "refusal":
                            PrintUtils.print_bot(f"<refusal>{event.data.part.refusal}", end="")
                        case _:
                            logger.warning(f"Unknown part type: {event.data.part.type}! {event}")
                elif event.data.type == "response.content_part.done":
                    match event.data.part.type:
                        case "output_text":
                            pass
                        case "refusal":
                            PrintUtils.print_bot("</refusal>")
                        case _:
                            logger.warning(f"Unknown part type: {event.data.part.type}! {event}")
                elif event.data.type == "response.reasoning_summary_part.added":
                    PrintUtils.print_info("<reasoning_summary>", end="")
                elif event.data.type == "response.reasoning_summary_part.done":
                    # PrintUtils.print_info("</reasoning_summary>", end="")
                    logger.info("</reasoning_summary>")  # It seems that vllm's output order is wrong
                elif event.data.type == "response.reasoning_summary_text.delta":
                    PrintUtils.print_info(f"{event.data.delta}", end="")
                elif event.data.type == "response.function_call_arguments.delta":
                    PrintUtils.print_bot(f"{event.data.delta}", end="")
                elif event.data.type == "response.function_call_arguments.done":
                    pass
                elif event.data.type == "response.output_text.delta":
                    PrintUtils.print_bot(f"{event.data.delta}", end="")
                elif event.data.type == "response.reasoning_text.delta":
                    PrintUtils.print_info(f"{event.data.delta}", end="")
                elif event.data.type == "response.reasoning_text.done":
                    PrintUtils.print_info("</reasoning_text>", end="")
                elif event.data.type in ("response.output_text.done",):
                    PrintUtils.print_info("")
                elif event.data.type in (
                    "response.created",
                    "response.completed",
                    "response.in_progress",
                ):
                    pass
                else:
                    PrintUtils.print_info(f"Unknown event type: {event.data.type}! {event}")
                    # raise ValueError(f"Unknown event type: {event.data.type}")
            elif isinstance(event, RunItemStreamEvent):
                item: RunItem = event.item
                if item.type == "message_output_item":
                    pass  # do not print twice to avoid duplicate! (already handled `response.output_text.delta`)
                    # PrintUtils.print_bot(f"{ItemHelpers.text_message_output(item).strip()}")
                elif item.type == "reasoning_item":
                    pass
                elif item.type == "tool_call_item":
                    pass
                    # PrintUtils.print_bot([tool_call] {item.raw_item.name}({item.raw_item.arguments})")
                elif item.type == "tool_call_output_item":
                    PrintUtils.print_tool(f"[tool_output] {item.output}")  # item.raw_item
                elif item.type == "handoff_call_item":  # same as `ToolCallItem`
                    PrintUtils.print_bot(f"[handoff_call] {item.raw_item.name}({item.raw_item.arguments})")
                elif item.type == "handoff_output_item":
                    PrintUtils.print_info(f">> Handoff from {item.source_agent.name} to {item.target_agent.name}")
                elif event.type in (
                    "mcp_list_tools_item",
                    "mcp_approval_request_item",
                    "mcp_approval_response_item",
                ):
                    PrintUtils.print_info(f"  >>> Skipping item: {event}")
                else:
                    PrintUtils.print_info(f"  >>> Skipping item: {item.__class__.__name__}")
            elif isinstance(event, AgentUpdatedStreamEvent):
                PrintUtils.print_info(f">> new agent: {event.new_agent.name}")
            # skip events from youtu-agent
            elif event.type in ("orchestrator_stream_event", "orchestra_stream_event"):
                pass
            else:
                logger.warning(f"Unknown event type: {event.type}! {event}")
        print()  # Newline after stream?

    @staticmethod
    def convert_model_settings(params: OpenAIChatCompletionParams) -> ModelSettings:
        # "tools", "messages", "model"
        # FIXME: move to extra_args
        for p in ("max_completion_tokens", "top_logprobs", "logprobs", "seed", "stop"):
            if p in params:
                logger.warning(f"Parameter `{p}` is not supported in ModelSettings")
        return ModelSettings(
            max_tokens=params.get("max_tokens", None),
            temperature=params.get("temperature", None),
            top_p=params.get("top_p", None),
            frequency_penalty=params.get("frequency_penalty", None),
            presence_penalty=params.get("presence_penalty", None),
            tool_choice=params.get("tool_choice", None),
            parallel_tool_calls=params.get("parallel_tool_calls", None),
            extra_query=params.get("extra_query", None),
            extra_body=params.get("extra_body", None),
            extra_headers=params.get("extra_headers", None),
        )

    @staticmethod
    def convert_sp_input(
        messages: list[ChatCompletionMessageParam],
    ) -> tuple[str | None, str | list[TResponseInputItem]]:
        if isinstance(messages, str):
            return None, messages
        if messages[0].get("role", None) == "system":
            return messages[0]["content"], messages[1:]
        return None, messages

    @staticmethod
    def convert_tool(tool: ChatCompletionToolParam) -> FunctionTool:
        assert tool["type"] == "function"
        return FunctionTool(
            name=tool["function"]["name"],
            description=tool["function"].get("description", ""),
            params_json_schema=tool["function"].get("parameters", None),
            on_invoke_tool=None,
        )

    @staticmethod
    def get_message_from_image(image_url: str) -> dict:
        """Get a message dict for image input."""
        # from openai.types.responses.response_input_item_param import Message
        # from openai.types.responses.response_input_image_param import ResponseInputImageParam
        return {"role": "user", "content": [{"type": "input_image", "image_url": encode_image(image_url)}]}

generate_group_id staticmethod

generate_group_id() -> str

Generate a unique group ID. (Used in OpenAI tracing) Ref: https://openai.github.io/openai-agents-python/tracing/

Source code in utu/utils/agents_utils.py
 97
 98
 99
100
101
102
@staticmethod
def generate_group_id() -> str:
    """Generate a unique group ID. (Used in OpenAI tracing)
    Ref: https://openai.github.io/openai-agents-python/tracing/
    """
    return uuid.uuid4().hex[:16]

print_new_items staticmethod

print_new_items(new_items: list[RunItem]) -> None

Print new items generated by Runner.run()

Source code in utu/utils/agents_utils.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
@staticmethod
def print_new_items(new_items: list[RunItem]) -> None:
    """Print new items generated by Runner.run()"""
    for new_item in new_items:
        agent_name = new_item.agent.name
        if isinstance(new_item, MessageOutputItem):
            PrintUtils.print_bot(f"{agent_name}: {ItemHelpers.text_message_output(new_item)}")
        elif isinstance(new_item, HandoffOutputItem):
            PrintUtils.print_info(f"Handed off from {new_item.source_agent.name} to {new_item.target_agent.name}")
        elif isinstance(new_item, ToolCallItem):
            assert isinstance(new_item.raw_item, ResponseFunctionToolCall)  # DONOT use openai's built-in tools
            PrintUtils.print_info(
                f"{agent_name}: Calling a tool: {new_item.raw_item.name}({json.loads(new_item.raw_item.arguments)})"
            )
        elif isinstance(new_item, ToolCallOutputItem):
            PrintUtils.print_tool(f"Tool call output: {new_item.output}")
        elif isinstance(new_item, ReasoningItem):
            PrintUtils.print_info(f"{agent_name}: Reasoning: {new_item.raw_item}")
        else:
            PrintUtils.print_info(f"{agent_name}: Skipping item: {new_item.__class__.__name__}")

print_stream_events async staticmethod

print_stream_events(
    result: AsyncIterator[StreamEvent],
) -> None

Print stream events generated by Runner.run_streamed()

Source code in utu/utils/agents_utils.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
@staticmethod
async def print_stream_events(result: AsyncIterator[StreamEvent]) -> None:
    """Print stream events generated by Runner.run_streamed()"""
    async for event in result:
        # print(f"> [DEBUG] event: {event}")
        if isinstance(event, RawResponsesStreamEvent):
            # event.data -- ResponseStreamEvent
            if event.data.type == "response.output_item.added":
                match event.data.item.type:
                    # computer_call, code_interpreter_call, custom_tool_call, file_search_call, function_call,
                    # we_search_call, image_generation_call, local_shell_call,
                    # mcp_call, mcp_list_tools, mcp_approval_request, message, reasoning
                    case "message":
                        pass
                    case "function_call":
                        PrintUtils.print_bot(
                            f"<toolcall name={event.data.item.name}>{event.data.item.arguments}", end=""
                        )
                    case _:
                        PrintUtils.print_bot(f"<{event.data.item.type}>", end="")
            elif event.data.type == "response.output_item.done":
                match event.data.item.type:
                    case "message":
                        pass
                        # PrintUtils.print_bot("")  # add a new line?
                    case "function_call":
                        PrintUtils.print_bot("</toolcall>")
                    case _:
                        # PrintUtils.print_bot(f"</{event.data.item.type}>")
                        logger.info(f"</{event.data.item.type}>")  # It seems that vllm's output order is wrong
            elif event.data.type == "response.content_part.added":
                match event.data.part.type:
                    # output_text, refusal
                    case "output_text":
                        pass
                    case "refusal":
                        PrintUtils.print_bot(f"<refusal>{event.data.part.refusal}", end="")
                    case _:
                        logger.warning(f"Unknown part type: {event.data.part.type}! {event}")
            elif event.data.type == "response.content_part.done":
                match event.data.part.type:
                    case "output_text":
                        pass
                    case "refusal":
                        PrintUtils.print_bot("</refusal>")
                    case _:
                        logger.warning(f"Unknown part type: {event.data.part.type}! {event}")
            elif event.data.type == "response.reasoning_summary_part.added":
                PrintUtils.print_info("<reasoning_summary>", end="")
            elif event.data.type == "response.reasoning_summary_part.done":
                # PrintUtils.print_info("</reasoning_summary>", end="")
                logger.info("</reasoning_summary>")  # It seems that vllm's output order is wrong
            elif event.data.type == "response.reasoning_summary_text.delta":
                PrintUtils.print_info(f"{event.data.delta}", end="")
            elif event.data.type == "response.function_call_arguments.delta":
                PrintUtils.print_bot(f"{event.data.delta}", end="")
            elif event.data.type == "response.function_call_arguments.done":
                pass
            elif event.data.type == "response.output_text.delta":
                PrintUtils.print_bot(f"{event.data.delta}", end="")
            elif event.data.type == "response.reasoning_text.delta":
                PrintUtils.print_info(f"{event.data.delta}", end="")
            elif event.data.type == "response.reasoning_text.done":
                PrintUtils.print_info("</reasoning_text>", end="")
            elif event.data.type in ("response.output_text.done",):
                PrintUtils.print_info("")
            elif event.data.type in (
                "response.created",
                "response.completed",
                "response.in_progress",
            ):
                pass
            else:
                PrintUtils.print_info(f"Unknown event type: {event.data.type}! {event}")
                # raise ValueError(f"Unknown event type: {event.data.type}")
        elif isinstance(event, RunItemStreamEvent):
            item: RunItem = event.item
            if item.type == "message_output_item":
                pass  # do not print twice to avoid duplicate! (already handled `response.output_text.delta`)
                # PrintUtils.print_bot(f"{ItemHelpers.text_message_output(item).strip()}")
            elif item.type == "reasoning_item":
                pass
            elif item.type == "tool_call_item":
                pass
                # PrintUtils.print_bot([tool_call] {item.raw_item.name}({item.raw_item.arguments})")
            elif item.type == "tool_call_output_item":
                PrintUtils.print_tool(f"[tool_output] {item.output}")  # item.raw_item
            elif item.type == "handoff_call_item":  # same as `ToolCallItem`
                PrintUtils.print_bot(f"[handoff_call] {item.raw_item.name}({item.raw_item.arguments})")
            elif item.type == "handoff_output_item":
                PrintUtils.print_info(f">> Handoff from {item.source_agent.name} to {item.target_agent.name}")
            elif event.type in (
                "mcp_list_tools_item",
                "mcp_approval_request_item",
                "mcp_approval_response_item",
            ):
                PrintUtils.print_info(f"  >>> Skipping item: {event}")
            else:
                PrintUtils.print_info(f"  >>> Skipping item: {item.__class__.__name__}")
        elif isinstance(event, AgentUpdatedStreamEvent):
            PrintUtils.print_info(f">> new agent: {event.new_agent.name}")
        # skip events from youtu-agent
        elif event.type in ("orchestrator_stream_event", "orchestra_stream_event"):
            pass
        else:
            logger.warning(f"Unknown event type: {event.type}! {event}")
    print()  # Newline after stream?

get_message_from_image staticmethod

get_message_from_image(image_url: str) -> dict

Get a message dict for image input.

Source code in utu/utils/agents_utils.py
323
324
325
326
327
328
@staticmethod
def get_message_from_image(image_url: str) -> dict:
    """Get a message dict for image input."""
    # from openai.types.responses.response_input_item_param import Message
    # from openai.types.responses.response_input_image_param import ResponseInputImageParam
    return {"role": "user", "content": [{"type": "input_image", "image_url": encode_image(image_url)}]}

SimplifiedOpenAIChatCompletionsModel

Bases: OpenAIChatCompletionsModel

extend OpenAIChatCompletionsModel to support basic api - enable tracing based on SimplifiedAsyncOpenAI

Source code in utu/utils/agents_utils.py
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
class SimplifiedOpenAIChatCompletionsModel(OpenAIChatCompletionsModel):
    """extend OpenAIChatCompletionsModel to support basic api
    - enable tracing based on SimplifiedAsyncOpenAI
    """

    async def query_one(self, **kwargs) -> str:
        system_instructions, input = AgentsUtils.convert_sp_input(kwargs["messages"])
        model_settings = AgentsUtils.convert_model_settings(kwargs)
        tools = [AgentsUtils.convert_tool(tool) for tool in kwargs.get("tools", [])]
        response = await self.get_response(
            system_instructions=system_instructions,
            input=input,
            model_settings=model_settings,
            tools=tools,
            output_schema=None,
            handoffs=[],
            tracing=ModelTracing.ENABLED,
            previous_response_id=None,
            prompt=None,
        )
        return ChatCompletionConverter.items_to_messages(response.to_input_items())